An Introduction to Housing Price Aggregates

William H. Rogers University of Missouri at Saint Louis

January 27, 2011

W. H. Rogers UMSL Real Estate Price Index

Why are Housing Price Aggregates Important?

Shelter is important

同 と く ヨ と く ヨ と

- Housing affordability is a major policy concern in most areas
- Homeownership (also a major policy concern) may be affected by housing prices

- Housing affordability is a major policy concern in most areas
- Homeownership (also a major policy concern) may be affected by housing prices
- Real estate (mainly in the form of housing) is a major source of wealth
- Real estate markets may have a major influence on business cycles

- Housing affordability is a major policy concern in most areas
- Homeownership (also a major policy concern) may be affected by housing prices
- Real estate (mainly in the form of housing) is a major source of wealth
- Real estate markets may have a major influence on business cycles
 - The wealth effect: although most estimates suggest a weak connection

- Housing affordability is a major policy concern in most areas
- Homeownership (also a major policy concern) may be affected by housing prices
- Real estate (mainly in the form of housing) is a major source of wealth
- Real estate markets may have a major influence on business cycles
 - The wealth effect: although most estimates suggest a weak connection
 - Housing construction has been a good predictor of business cycles (post hoc ergo propter hoc?)

向下 イヨト イヨト

Housing data is widely collected, but most of it is proprietary

- Housing data is widely collected, but most of it is proprietary
- Real estate data sources

- Housing data is widely collected, but most of it is proprietary
- Real estate data sources
 - National Association of Realtors (Multiple Listing Services)
 - Large sample; timely (quarterly); includes a seasonal adjustment; but much of the information is proprietary

- Housing data is widely collected, but most of it is proprietary
- Real estate data sources
 - National Association of Realtors (Multiple Listing Services)
 - Large sample; timely (quarterly); includes a seasonal adjustment; but much of the information is proprietary
 - The Census Bureau (new home construction)
 - Same advantages plus free historical data; new construction only (in what ways might this be a problem?)

同 と く ヨ と く ヨ と

- Advantage: mean, median, and mode are easy to calculate
- Median is most popular because it tempers extreme values

- Advantage: mean, median, and mode are easy to calculate
- Median is most popular because it tempers extreme values
- So let's look at some data

- Advantage: mean, median, and mode are easy to calculate
- Median is most popular because it tempers extreme values
- So let's look at some data
 - Saint Louis County single-family housing from 2000 through 2009 (interesting years!)
 - Saint Louis County Assessor's Office: actual transactions, not assessments

Saint Louis Co. Median Housing Price: 2000 - 2009

Notice the following:

- General upward trend (Did you see a "bubble"?)
- Noisy data; strong seasonal component
- We could apply a seasonal adjustment to the series

- Notice the following:
 - General upward trend (Did you see a "bubble"?)
 - Noisy data; strong seasonal component
 - We could apply a seasonal adjustment to the series
- How should we present the data?

- Notice the following:
 - General upward trend (Did you see a "bubble"?)
 - Noisy data; strong seasonal component
 - We could apply a seasonal adjustment to the series
- How should we present the data?
- Indexes are a nice way to present results because they're unit free
 - $\frac{P_t}{P_0} \cdot 100$; units cancel

- Notice the following:
 - General upward trend (Did you see a "bubble"?)
 - Noisy data; strong seasonal component
 - We could apply a seasonal adjustment to the series
- How should we present the data?
- Indexes are a nice way to present results because they're unit free
 - $\frac{P_t}{P_0} \cdot 100$; units cancel
- Fine, but we're assuming constant housing quality across months

- Notice the following:
 - General upward trend (Did you see a "bubble"?)
 - Noisy data; strong seasonal component
 - We could apply a seasonal adjustment to the series
- How should we present the data?
- Indexes are a nice way to present results because they're unit free
 - $\frac{P_t}{P_0} \cdot 100$; units cancel
- Fine, but we're assuming constant housing quality across months
- Let's look at housing quality data

Saint Louis Co. Median Housing Quality: 2000 - 2009

Saint Louis Co. Median Housing Quality: 2000 - 2009

W. H. Rogers UMSL Real Estate Price Index

白 ト イヨト イヨト

- Notice the following
 - General upward and downward trends; thus quality changes
 - Noisy data; strong seasonal component

- Notice the following
 - General upward and downward trends; thus quality changes
 - Noisy data; strong seasonal component
- A median price index does not hold quality constant

- Notice the following
 - General upward and downward trends; thus quality changes
 - Noisy data; strong seasonal component
- A median price index does not hold quality constant
 - Tells us about the typical housing expenditure
 - Does not tell us about house price appreciation

An ideal price index tells us about constant-quality price changes

白 ト イヨト イヨト

- An ideal price index tells us about constant-quality price changes
- Laspeyres index: $I_t = \frac{P_t Q_0}{P_0 Q_0} \cdot 100$

同 と く ヨ と く ヨ と

- An ideal price index tells us about constant-quality price changes
- Laspeyres index: $I_t = \frac{P_t Q_0}{P_0 Q_0} \cdot 100$

• Paasche index:
$$I_t = \frac{P_t Q_t}{P_0 Q_t} \cdot 100$$

同 と く ヨ と く ヨ と

- An ideal price index tells us about constant-quality price changes
- Laspeyres index: $I_t = \frac{P_t Q_0}{P_0 Q_0} \cdot 100$
- Paasche index: $I_t = \frac{P_t Q_t}{P_0 Q_t} \cdot 100$
- The above indexes generally overstate price changes due to the substitution bias

- An ideal price index tells us about constant-quality price changes
- Laspeyres index: $I_t = \frac{P_t Q_0}{P_0 Q_0} \cdot 100$
- Paasche index: $I_t = \frac{P_t Q_t}{P_0 Q_t} \cdot 100$
- The above indexes generally overstate price changes due to the substitution bias
 - Fisher Index: $I_t = \sqrt{\frac{P_t Q_0}{P_0 Q_0} \cdot \frac{P_t Q_t}{P_0 Q_t}} \cdot 100$
 - Chain-weighting has become popular... more on that later

Rationale: housing is like a bundle of homogeneous services

_∢≣≯

- ▶ Rationale: housing is like a bundle of homogeneous services
- The hedonic model estimates the "shadow price" of each service in order to measure the overall change in housing series prices

- ► Rationale: housing is like a bundle of homogeneous services
- The hedonic model estimates the "shadow price" of each service in order to measure the overall change in housing series prices
- ▶ Hedonic traditions: (1) explicit time and (2) imputation
 - Let's focus on the explicit time approach first

- Rationale: housing is like a bundle of homogeneous services
- The hedonic model estimates the "shadow price" of each service in order to measure the overall change in housing series prices
- ▶ Hedonic traditions: (1) explicit time and (2) imputation
 - Let's focus on the explicit time approach first
- For simplicity, consider a semi-log hedonic model

$$lnP_{th} = \sum_{c=1}^{C} \beta_c z_{cth} + \sum_{t=1}^{T} \delta_t d_{th} + \varepsilon_{th}$$
(1)

Saint Louis Co. Hedonic Index: 2000 - 2009

白 ト イヨト イヨト

- You can see the downturn happen sooner
- Seasonal component still exists, but is weaker

- You can see the downturn happen sooner
- Seasonal component still exists, but is weaker

▶ We still need to apply a seasonal adjustment to the series

- Notice the following
 - You can see the downturn happen sooner
 - Seasonal component still exists, but is weaker
- ▶ We still need to apply a seasonal adjustment to the series
- What are we assuming about the housing market? (I.e. what are we holding constant?

- Notice the following
 - You can see the downturn happen sooner
 - Seasonal component still exists, but is weaker
- ▶ We still need to apply a seasonal adjustment to the series
- What are we assuming about the housing market? (I.e. what are we holding constant?
 - Assuming accurate data and OLS assumptions what's new?

- Notice the following
 - You can see the downturn happen sooner
 - Seasonal component still exists, but is weaker
- ▶ We still need to apply a seasonal adjustment to the series
- What are we assuming about the housing market? (I.e. what are we holding constant?
 - Assuming accurate data and OLS assumptions what's new?
 - Assuming coefficients constant over time and space

- Notice the following
 - You can see the downturn happen sooner
 - Seasonal component still exists, but is weaker
- We still need to apply a seasonal adjustment to the series
- What are we assuming about the housing market? (I.e. what are we holding constant?
 - Assuming accurate data and OLS assumptions what's new?
 - Assuming coefficients constant over time and space
- BTW: What is the base year?

- There are three variants on the explicit time approach
 - (1) single equation, (2) overlapping equation, and (3) repeat sales

- There are three variants on the explicit time approach
 - (1) single equation, (2) overlapping equation, and (3) repeat sales
- The single equation model includes a time variable (or set of dummy variables)

- There are three variants on the explicit time approach
 - (1) single equation, (2) overlapping equation, and (3) repeat sales
- The single equation model includes a time variable (or set of dummy variables)
- The overlapping equation model uses a chain of overlapping time periods

- There are three variants on the explicit time approach
 - (1) single equation, (2) overlapping equation, and (3) repeat sales
- The single equation model includes a time variable (or set of dummy variables)
- The overlapping equation model uses a chain of overlapping time periods
- The repeat sales model is a ratio of two explicit-time models

Hedonic Index: Repeat Sales Model

The repeat sales model is not normally thought of as a hedonic model

Hedonic Index: Repeat Sales Model

- The repeat sales model is not normally thought of as a hedonic model
- Consider a house that sells in 2000 and again in 2008

$$InP_{2000} = \sum_{c=1}^{C} \beta_c z_{c,2000} + \delta_{2000} d_{2000}$$
(2)

$$lnP_{2008} = \sum_{c=1}^{C} \beta_c z_{c,2008} + \delta_{2008} d_{2008}$$
(3)

Hedonic Index: Repeat Sales Model

- The repeat sales model is not normally thought of as a hedonic model
- Consider a house that sells in 2000 and again in 2008

$$InP_{2000} = \sum_{c=1}^{C} \beta_c z_{c,2000} + \delta_{2000} d_{2000}$$
(2)

$$lnP_{2008} = \sum_{c=1}^{C} \beta_c z_{c,2008} + \delta_{2008} d_{2008}$$
(3)

 Assuming the house's bundle has not changed, consider the following equation

$$lnP_{2008} - lnP_{2000} = \delta_{2008}d_{2008} - \delta_{2000}d_{2000} \tag{4}$$

Federal Housing Finance Agency (FHFA)

- Fannie & Freddie loans: large but biased sample
- Estimates by the 9 Census divisions and weighted by housing units

Federal Housing Finance Agency (FHFA)

- Fannie & Freddie loans: large but biased sample
- Estimates by the 9 Census divisions and weighted by housing units
- Case-Shiller (published by Standard & Poor's)
 - Uses deed records, where suspected non-arms-length transactions are excluded
 - Estimates by the 9 Census divisions and weighted by estimated housing values: PE Ratio

Advantages of a repeat sales model

- Some control of quality: depend on reinvestment
- Data requirements are only slightly larger than the median measure

Advantages of a repeat sales model

- Some control of quality: depend on reinvestment
- Data requirements are only slightly larger than the median measure
- Disadvantages of the repeat sales model
 - Housing reinvestment and embedded depreciation
 - Repeat sales sample bias
 - Past measures change when new sales are added

 Single equation and repeat sales models assume a constant set of shadow prices (substitution bias), and change when new sales are added

- Single equation and repeat sales models assume a constant set of shadow prices (substitution bias), and change when new sales are added
- The imputation method allows shadow prices to change over time and space, and does not change when new sales are added

- Single equation and repeat sales models assume a constant set of shadow prices (substitution bias), and change when new sales are added
- The imputation method allows shadow prices to change over time and space, and does not change when new sales are added
- Shadow prices are then used to estimate the price ratio

$$\frac{p_{kt}}{p_{js}} = \frac{p_{kt}(z_{kt})}{p_{js}(z_{kt})} \times \frac{p_{js}(z_{kt})}{p_{js}(z_{js})}$$
(5)

- Single equation and repeat sales models assume a constant set of shadow prices (substitution bias), and change when new sales are added
- The imputation method allows shadow prices to change over time and space, and does not change when new sales are added
- Shadow prices are then used to estimate the price ratio

$$\frac{p_{kt}}{p_{js}} = \frac{p_{kt}(z_{kt})}{p_{js}(z_{kt})} \times \frac{p_{js}(z_{kt})}{p_{js}(z_{js})}$$
(5)

The first term represents a constant quality price index, and the second is a quanity index How can one estimate separate shadow prices for each time period and region?

▶ ★ 문 ▶ ★ 문 ▶

- How can one estimate separate shadow prices for each time period and region?
- A dummy variable for each period-region with interaction

- How can one estimate separate shadow prices for each time period and region?
- A dummy variable for each period-region with interaction
- Separate regression for each period-region

- How can one estimate separate shadow prices for each time period and region?
- A dummy variable for each period-region with interaction
- Separate regression for each period-region
- What are the advantages?