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Why are Housing Price Aggregates Important?

I Shelter is important

I Housing affordability is a major policy concern in most areas
I Homeownership (also a major policy concern) may be affected

by housing prices

I Real estate (mainly in the form of housing) is a major source
of wealth

I Real estate markets may have a major influence on business
cycles

I The wealth effect: although most estimates suggest a weak
connection

I Housing construction has been a good predictor of business
cycles (post hoc ergo propter hoc?)
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Why are Housing Price Aggregates Difficult to Measure?

I Housing data is widely collected, but most of it is proprietary

I Real estate data sources

I National Association of Realtors (Multiple Listing Services)

I Large sample; timely (quarterly); includes a seasonal
adjustment; but much of the information is proprietary

I The Census Bureau (new home construction)

I Same advantages plus free historical data; new construction
only (in what ways might this be a problem?)
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Price Index Type I: Median Price Index

I The simplest measure is the median

I Advantage: mean, median, and mode are easy to calculate
I Median is most popular because it tempers extreme values

I So let’s look at some data

I Saint Louis County single-family housing from 2000 through
2009 (interesting years!)

I Saint Louis County Assessor’s Office: actual transactions, not
assessments
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Saint Louis Co. Median Housing Price: 2000 - 2009
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Price Index Type I: Median Price Index

I Notice the following:
I General upward trend (Did you see a “bubble”?)
I Noisy data; strong seasonal component
I We could apply a seasonal adjustment to the series

I How should we present the data?
I Indexes are a nice way to present results because they’re unit

free

I Pt

P0
· 100; units cancel

I Fine, but we’re assuming constant housing quality across
months

I Let’s look at housing quality data
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Saint Louis Co. Median Housing Quality: 2000 - 2009
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Saint Louis Co. Median Housing Quality: 2000 - 2009
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Price Index Type I: Median Price Index

I Notice the following

I General upward and downward trends; thus quality changes
I Noisy data; strong seasonal component

I A median price index does not hold quality constant

I Tells us about the typical housing expenditure
I Does not tell us about house price appreciation
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What is a Price Index?

I An ideal price index tells us about constant-quality price
changes

I Laspeyres index: It = PtQ0
P0Q0

· 100

I Paasche index: It = PtQt
P0Qt

· 100

I The above indexes generally overstate price changes due to
the substitution bias

I Fisher Index: It =
√

PtQ0

P0Q0
· PtQt

P0Qt
· 100

I Chain-weighting has become popular. . . more on that later
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Price Index Type II: Hedonic Index

I Rationale: housing is like a bundle of homogeneous services

I The hedonic model estimates the “shadow price” of each
service in order to measure the overall change in housing
series prices

I Hedonic traditions: (1) explicit time and (2) imputation

I Let’s focus on the explicit time approach first

I For simplicity, consider a semi-log hedonic model

lnPth =
C∑

c=1

βczcth +
T∑
t=1

δtdth + εth (1)
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Saint Louis Co. Hedonic Index: 2000 - 2009
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Hedonic Index: Explicit Time Model

I Notice the following

I You can see the downturn happen sooner
I Seasonal component still exists, but is weaker

I We still need to apply a seasonal adjustment to the series
I What are we assuming about the housing market? (I.e. what

are we holding constant?

I Assuming accurate data and OLS assumptions – what’s new?
I Assuming coefficients constant over time and space

I BTW: What is the base year?
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Hedonic Index: Explicit Time Model

I There are three variants on the explicit time approach
I (1) single equation, (2) overlapping equation, and (3) repeat

sales

I The single equation model includes a time variable (or set of
dummy variables)

I The overlapping equation model uses a chain of overlapping
time periods

I The repeat sales model is a ratio of two explicit-time models
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Hedonic Index: Repeat Sales Model

I The repeat sales model is not normally thought of as a
hedonic model

I Consider a house that sells in 2000 and again in 2008

lnP2000 =
C∑

c=1

βczc,2000 + δ2000d2000 (2)

lnP2008 =
C∑

c=1

βczc,2008 + δ2008d2008 (3)

I Assuming the house’s bundle has not changed, consider the
following equation

lnP2008 − lnP2000 = δ2008d2008 − δ2000d2000 (4)
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Hedonic Index: Repeat Sales Model

I Federal Housing Finance Agency (FHFA)
I Fannie & Freddie loans: large but biased sample
I Estimates by the 9 Census divisions and weighted by housing

units

I Case-Shiller (published by Standard & Poor’s)

I Uses deed records, where suspected non-arms-length
transactions are excluded

I Estimates by the 9 Census divisions and weighted by estimated
housing values: PE Ratio
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Hedonic Index: Repeat Sales Model

I Advantages of a repeat sales model
I Some control of quality: depend on reinvestment
I Data requirements are only slightly larger than the median

measure

I Disadvantages of the repeat sales model

I Housing reinvestment and embedded depreciation
I Repeat sales sample bias
I Past measures change when new sales are added
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Hedonic Index: Imputation Method

I Single equation and repeat sales models assume a constant
set of shadow prices (substitution bias), and change when new
sales are added

I The imputation method allows shadow prices to change over
time and space, and does not change when new sales are
added

I Shadow prices are then used to estimate the price ratio

pkt
pjs

=
pkt(zkt)

pjs(zkt)
×

pjs(zkt)

pjs(zjs)
(5)

I The first term represents a constant quality price index, and
the second is a quanity index
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Hedonic Index: Imputation Method

I How can one estimate separate shadow prices for each time
period and region?

I A dummy variable for each period-region with interaction

I Separate regression for each period-region

I What are the advantages?
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